
J. Fluid Mech. (2008), vol. 599, pp. 1–28. c© 2008 Cambridge University Press

doi:10.1017/S0022112007009640 Printed in the United Kingdom

1

Homogeneous turbulence in ferrofluids with a
steady magnetic field

KRISTOPHER R. SCHUMACHER1†, JAMES J. RILEY2

AND BRUCE A. FINLAYSON1

1Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
2Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA

kschuma@jhu.edu; rileyj@u.washington.edu; finlayson@cheme.washington.edu

(Received 1 May 2007 and in revised form 24 September 2007)

The general equations necessary for a basic theoretical interpretation of the physics of
turbulence in ferrofluids are presented. The equations are examined and show multiple
novel turbulence aspects that arise in ferrofluids. For example, two new modes of
turbulent kinetic energy and turbulent kinetic energy dissipation rate occur, and
unique modes of energy conversion (rotational to/from translational kinetic energy
and magnetic energy to/from turbulent kinetic energy) are exhibited in turbulent
ferrofluid flows. Furthermore, it is shown that potential models for turbulence in
ferrofluids are complicated by additional closure requirements from the five additional
nonlinear terms in the governing equations. The equations are applied to turbulence of
a ferrofluid in the presence of a steady magnetic field (as well as the case of no magnetic
field) in order to identify the importance of the new terms. Results are presented for
the enhanced anisotropy in the presence of a magnetic field, and results show how
turbulence properties (both classical ones and new ones) vary with the strength of
the magnetic field. Three different equations for the magnetization are examined and
lead to different results at large magnitudes of the applied magnetic field.

1. Introduction
A ferrofluid is a dielectric liquid with stable nanoscale (3–15 nm) magnetic particles

suspended within it such that it responds strongly to magnetic fields. Each particle
has a single magnetic domain with the magnetic dipole moment fixed rigidly within
it. Brownian motion keeps the particles from settling in an external field, and an
attached layer of surfactant helps prevent particle agglomeration through stearic
hindrance. Ferrofluids should not be confused with magnetorheological fluids that
have micron-sized magnetic particles and solidify or ‘freeze up’ in the presence of
strong magnetic fields. Ferrofluids are stable and retain their ability to flow in intense
magnetic fields. Ferrofluids are opaque and typically contain on the order of 1017

magnetic particles per cm3 (Rosensweig 1985). They do not occur in nature and must
be manufactured using either size reduction or chemical precipitation (Rosensweig
1985). Ferrofluids, sometimes called superparamagnetic liquids, have magnetic
susceptibilities on the order of one, which is about three orders of magnitude larger
than any other paramagnetic fluid (see table 1).
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Material Susceptibility

Paramagnetic salt: FeCl3 0.00046
Paramagnetic salt: MnCl2 0.00090
Paramagnetic salt: Ho(NO3)3 0.00276
Typical ferrofluid 0.33

Table 1. Susceptibilities of some paramagnetic salts and a typical ferrofluid. The values for
the salts are obtained from table 2.1 in Rosensweig (1985).

The ability to control and position ferrofluids using a magnetic force field leads
to practical applications that include hermetic seals in pumps, computer hard drives
and crystal growing apparatus. Ferrofluids exhibit convective effects in microgravity
environments, and allow increased heat transfer in electrical devices on Earth due
to magnetoconvection (Snyder, Cader & Finlayson 2003). There are also potential
biomedical applications for concentrated drug delivery to specific target sites using
external magnetic fields to guide the fluid or separate cells (Lübbe, Alexiou &
Bergemann 2001; Roger et al. 1999; Ramchand et al. 2001; Berger et al. 2001).

The majority of ferrofluid studies are for stagnant or laminar flow cases.
Experiments have shown that bulk ferrofluid flow can be induced with nothing
more than a spatially uniform, rotating magnetic field (Moskowitz & Rosensweig
1967). In their system, magnetic body forces were zero, and fluid motion was
driven by a microscopic torque mechanism. In some cases, Moskowitz & Rosensweig
observed the formation of eddies in their torque-driven flow. In shear flows, the
magnetic field can hinder free particle rotation, causing an additional resistance to
flow to arise (McTague 1969). Laminar Poiseuille flow experiments in oscillating
and rotating magnetic fields have shown fascinating results of drag reduction; for
example, Poiseuille flow experiments with oscillating magnetic fields directed down
the axis of the channel/pipe show that the effective viscosity can become lower
than the viscosity in the absence of a magnetic field (Bacri et al. 1995; Zeuner,
Richter & Rehberg 1998). It is interesting to note that Shliomis & Morozov (1994)
predicted a decrease in effective viscosity using ferrofluid theory prior to experimental
validation. Schumacher et al. (2003) and Krekhov, Shliomis & Kamiyama (2005)
used the ferrofluid equations to predict the experimental results of Schumacher et al.
(2003) for laminar flow in a pipe with an oscillating axial magnetic field.

Few studies of turbulent ferrofluid flow exist. Kamiyama (1996) studied the effects
of a pressure drop in turbulent pipe flow in steady non-uniform transverse magnetic
fields and found that increasing the magnitude of the magnetic field had little effect
on the pressure drop. Schumacher et al. (2003) studied the pressure drop in turbulent
pipe flow with uniform axially oscillating magnetic fields as a function of flow rate,
magnetic field strength, and oscillation frequency. Pressure drop data showed a small
dependence on magnetic field strength, but were almost independent of oscillation
frequency and flow rate. Schumacher et al. (2003) showed that a k–ε turbulence model
based on ferrofluid theory is capable of predicting the experimental turbulent pressure
drop behaviour after an initial parameter fit to determine susceptibility dependence
on the applied field. Anton (1990) measured velocity and turbulence intensities in the
logarithmic region of a turbulent pipe flow with a non-uniform transverse magnetic
field. Anton concluded that the magnetic field leads to suppression of turbulence.

In this paper we use direct numerical simulation (DNS) to study how the physics of
turbulent flow is modified by the magnetic field and its interaction with a ferrofluid. In



Homogeneous turbulence in ferrofluids 3

a general sense, this is exploratory research on turbulence in fluids possessing internal
angular momentum. The direct numerical simulation uses techniques that are standard
in the field, but they are adapted to the complexities of the equations governing a
ferrofluid, which are more numerous and have several additional nonlinear terms.
Furthermore, ferrofluid phenomena involve time scales that are much smaller than
for a Newtonian fluid.

The general equations that serve as a necessary framework for the interpretation of
the physics of turbulence in ferrofluids are presented in § 2 along with the Reynolds
stress and turbulent kinetic energy equations for ferrofluids. An emphasis is placed on
the interpretation of the novel energy terms that arise due to ferrofluids. This section
also presents several ways in which the magnetization can be modelled. The general
turbulent kinetic energy equations are reduced for the specific case of homogeneous
turbulence in § 3. Section 4 gives the physical parameters. Direct numerical simulation
(§ 5) is used to study the energetics of forced turbulence in ferrofluids under the
influence of an applied steady magnetic field, and the results are presented in § 6. The
results of this study provide guidance on the relative importance of the new terms
arising when a ferrofluid is in turbulent motion and, more generally, the results are
important for developing reliable turbulence models for ferrofluids.

2. Governing equations
2.1. Equations of motion

The governing equations for ferrofluids are based on the theory of structured continua
(Dahler & Scriven 1961, 1963), which allows fluids to have sub-continuum units with
rotational degrees of freedom. The theory of structured continua augments the Cauchy
equation for conservation of linear momentum,

ρDu/Dt = ∇ · T + ρS, (2.1)

with an equation of change for internal angular momentum,

ρIDω/Dt = ∇ · C + Q + A, (2.2)

where ρ is the density, u is the velocity, ω is the ferrofluid particle spin rate, I is
the moment of inertia of a ferrofluid particle, T is the stress tensor, S is the body
force vector, C is the couple stress tensor, Q is the body couple per unit volume,
and A = 2ζ (∇ × u − 2ω) represents the production of internal angular momentum
from external angular momentum, where the transfer coefficient ζ is called the vortex
viscosity. Note that A/(4ζ ) represents the difference between the local fluid rotation
rate ( 1

2
∇ × u) and the local ferrofluid particle rotation rate ω. A major result of this

theory is that the external angular momentum (i.e. the moment of linear momentum)
is no longer conserved. Thus, the usual arguments of stress tensor symmetry are
no longer valid, and the viscous stress tensor has a symmetric and an asymmetric
part, T= Ts + Ta , where the superscripts s and a denote symmetric and asymmetric,
respectively.

Rosensweig (1985) specialized the equations for a ferrofluid with the following
constitutive relations. The symmetric part of the stress tensor is the usual expression
for a Newtonian fluid, Ts = −pδ +2μe − 2

3
μ(∇ · u)δ, where μ is the dynamic viscosity,

e = 1
2
(∇u + ∇uT ) is the rate-of-strain tensor, p is the pressure and δ is the unit tensor.

The asymmetric stress tensor is written in terms of the vector A, using the polyadic
alternator epsilon, Ta = 1

2
ε · A, or, in index notation, T a

ij = 1
2
εijkAk . The couple stress

tensor is assumed symmetric and is taken to depend upon the angular spin rate
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gradient, C = 2η′s, where s= 1
2
(∇ω + ∇ωT ) is the spin-rate gradient tensor, and the

transport coefficient η′ is the spin viscosity. The magnetic body force is S = μo M · ∇H ,
and the magnetic body couple is Q = μo M × H , where μo is the permeability of free
space, M is the material magnetization vector, and H is the magnetic field vector.
Substituting the constitutive equations into the linear momentum and internal angular
momentum balances yields the governing equations of ferrofluid motion,

ρ

(
∂u
∂t

+ u · ∇u

)
= −∇p + 2μ∇ · e + ζ∇ × (2ω − ∇ × u) + μo M · ∇H, (2.3)

ρI

(
∂ω

∂t
+ u · ∇ω

)
= 2η′∇ · s + 2ζ (∇ × u − 2ω) + μo M × H . (2.4)

Ferrofluids are generally considered incompressible and with constant transport
properties so that, in particular, the continuity equation is given by

∇ · u = 0. (2.5)

The governing equations, in index notation, are

ρ
∂ui

∂t
+ ρukui,k = −p,i + 2μeij,j − 1

2
εiklAl,k + Si, (2.6)

ρI

(
∂ωi

∂t
+ ukωi,k

)
= η′sij,j + Ai + Qi, (2.7)

uk,k = 0. (2.8)

Note that because of M and H , (2.3)–(2.5) do not form a closed set. Also, ∇ · ω is not
necessarily zero, since the spin rate can differ significantly from the local fluid rotation
rate, one-half the fluid vorticity. An additional equation that describes the changing
material magnetization, along with Maxwell’s equations for a non-conducting fluid, is
necessary for closure. The various magnetization equations that have been proposed
in the literature along with the use of Maxwell’s equations are discussed below.

Vorticity is an important quantity in interpreting flow instabilities and turbulence.
Therefore it is useful to examine how the vorticity equation for a ferrofluid is modified
by the presence of a magnetic field and how the flow dynamics are changed. The curl
of (2.3), using (2.5), gives the following equation for the vorticity v ≡ ∇ × u:

ρ
Dv

Dt
= (v · ∇)u + μ∇2v − 1

2
∇ × (∇ × A) + μo∇ × (M · ∇H). (2.9)

It is seen on the right-hand side that, in addition to the usual vortex stretching/turning
and molecular diffusion terms that are present for a Newtonian fluid, there is also
a term related to A and another to M and H . Therefore, the local vorticity can
be modified by differences between the local spin rate and local vorticity, and by
the presence of gradients in the magnetic field. These influences can have important
effects on the dynamics of a turbulent flow. Using vector identities, the term in (2.9)
involving A can be written as

− 1
2
∇ × (∇ × A) = − 1

2
∇(∇ · A) + 1

2
∇2 A

= − 1
2
∇(∇ · ω) + 1

2
∇2 A, (2.10)

since ∇ · v = ∇ · (∇ × u) = 0. Therefore, the local vorticity is affected by local gradients
of the divergence of the spin rate and by the Laplacian of the difference between the
local spin rate and the local vorticity.
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Under most conditions (see § 4) the moment of inertia in the internal angular
momentum equation is very small and the effect of the couple stress C is negligible.
Then the spin equation, (2.4), becomes algebraic:

−A = 2ζ (2ω − ∇ × u) = μo M × H or ω =
1

2
∇ × u +

μo

4ζ
M × H . (2.11)

and the spin can be eliminated from the magnetization equation (see (2.21), (2.24)
and (2.26) discussed below), and from the momentum equation, (2.3):

ρ
∂u
∂t

+ ρu · ∇u = −∇p + μ∇2u +
μo

2
∇ × (M × H) + μo M · ∇H . (2.12)

In that case, it can be shown (Shliomis 1972) that the entire theory can be represented
by symmetric stresses without invoking an antisymmetric part or vortex viscosity.
There is still a one-to-one correspondence between the parameters involving the vortex
viscosity and the terms in the magnetization equation. Then the vortex viscosity is
given by

ζ =
μoτBM2

s

6χ
, (2.13)

where τB is the Brownian time constant, χ is the magnetic susceptibility, and Ms is
the saturation magnetization. Also note that replacing A by −μo M × H in the third
term on the right-hand side of (2.9), the vorticity equation, gives

− 1
2
∇×(∇× A) = 1

2
μo∇×[∇×(M × H)] = 1

2
μo∇[∇ · (M × H)]− 1

2
∇2(M × H). (2.14)

2.2. Energy equations

Useful physical insights into a system can be obtained by considering how the
primary components of energy are transported within the system. Therefore, the
energy equations for ferrofluids are considered here. The terms in the equations,
which represent the pathways of energy transfer between various energy components,
are given an interpretation.

In ferrofluids, the kinetic energy consists of a translational component, (ρ/2)u2
i ,

and a rotational component, (ρI/2)ω2
i . The transport equations for the translational

and rotational kinetic energies are derived in index notation, from (2.3) and (2.4)
using (2.5). The internal energy equation for an incompressible fluid with no isotropic
couple stress can be derived using a first law analysis (Brenner & Nadim 1996). The
transport equations for translational kinetic energy, rotational kinetic energy, and
internal energy are

ρ
D

Dt

1

2
u2

i = −(puj − 2μuieij ),j − 2μeij eij +
1

2
(εijkujAk),j

− 1

4ζ
AiAi − ωiAi + μouiMjHi,j , (2.15)

ρI
D

Dt

1

2
ω2

i = 2η′(ωisij ),j − 2η′sij sij + ωiAi + μ0εijkωiMjHk, (2.16)

ρ
DÛ

Dt
= 2μeij eij + 2η′sij sij +

1

4ζ
AiAi − qk,k + ρ Q̂h, (2.17)

where Û is the internal energy per unit mass, qk is the Fourier heat flux, and Q̂h is
a heat source. Note that the sum of the third, fourth, and fifth terms on the right-
hand side of the translational kinetic energy equation is equivalent to −(1/2)uiεiklAl,k ,
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according to the vector relationship:

−1

2
u · (∇ × A) =

1

2
∇ · (u × A) − 1

4ζ
A · A − ω · A. (2.18)

Consider the physical meaning of each of the terms on the right-hand side of
(2.15)–(2.17). The first and third terms on the right-hand side of (2.15) represent the
conservative rate of spatial transfer of translational kinetic energy due to pressure
and viscous forces and the rate of spatial transfer of translational kinetic energy due
to the presence of spin, respectively, while the last term represents the rate of work
done on the system by the magnetic body force. The first term on the right-hand side
of (2.16) represents the conservative rate of spatial transfer of rotational energy due
to the spin viscosity, while the last term gives the rate of work done on the system
by the magnetic body couple. The term, 2μeij eij , represents the classical irreversible
rate of transfer of translational kinetic energy into internal energy. Comparing (2.15)
and (2.17), it is seen that AiAi/(4ζ ) represents the irreversible transfer of translational
kinetic energy to internal energy, due to the presence of spin. Comparing (2.15) and
(2.16), it is seen that the term ωiAi gives the rate of transfer of translational kinetic
energy from/to rotational kinetic energy. Comparing (2.16) and (2.17), it is seen that
2η′sij sij represents the irreversible transfer of rotational kinetic energy into internal
energy.

2.3. Magnetization and Maxwell equations

The momentum, spin, and continuity equations described above do not form a closed
set, due to the M and H variables in the magnetic body force and body couple terms.
Equations that describe the changing material magnetization, along with Maxwell’s
equations for a non-conducting fluid, are necessary for closure.

Maxwell’s equations for a non-conducting fluid are

∇ · B = 0, ∇ × H = 0. (2.19a, b)

The magnetization is related to B and H using the definition

B ≡ μo(M + H). (2.20)

The magnetic field H can be represented by a potential, H = ∇φ, and Maxwell’s
equations are then satisfied with ∇2φ = − ∇ · M .

At least three different magnetization equations, which are described below, have
been proposed in the literature. The first, and original, ferrofluid magnetization
equation was proposed by Shliomis (1972). A second magnetization equation,
proposed by Martsenyuk, Raikher & Shliomis (1974), was derived from the Fokker–
Planck equation using the effective field method. The third equation, proposed by
Felderhof & Kroh (1999), was derived based on irreversible thermodynamics.

The magnetization equation proposed by Shliomis (1972) is

∂ M
∂t

= −u · ∇M + ω × M − 1

τ
(M − M0), (2.21)

where τ is the relaxation time of the ferrofluid particles (defined in § 4) and M0 is
the equilibrium magnetization. The equilibrium magnetization is determined by the
magnetic equation of state,

M0 = MSL(ξ )
H
H

, (2.22)
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where

L(ξ ) =
1

tanh(ξ )
− 1

ξ
, ξ =

μomH

kBT
, H =

√
H 2

x + H 2
y + H 2

z . (2.23a–c)

Here MS is the saturation magnetization, m is the magnetic moment of a single
particle, and kB is Boltzmann’s constant.

The magnetization equation derived by Felderhof & Kroh (1999) is

∂ M
∂t

= −u · ∇M + ω × M − χo

τ
[H − Heq], (2.24)

where χo is the initial magnetic susceptibility, and Heq is the local equilibrium magnetic
field. Here the initial susceptibility is χo = limH→0(M0/H ) = (μomMS)/(3kBT ). The
local equilibrium magnetic field is Heq = MC(M), where the following equation is
solved for C, given M:

C−1 =
MS

MC

{(
tanh

(
3χo

MS

MC

))−1

−
(

3χo

MS

MC

)−1
}

, M =
√

M2
x + M2

y + M2
z .

(2.25a, b)

The magnetization equation proposed by Martsenyuk et al. (1974) is

∂ M
∂t

= −u · ∇M +

(
1

2
∇ × u

)
× M − 3χo

2τM2

(
1 − 3L(ξe)

ξe

)
M × (M × H)

− 1

τ

[
M − 3χoL(ξe)

ξe

H

]
. (2.26)

ξei is the non-dimensional effective magnetic field for which the non-equilibrium
magnetization, Mi , is an equilibrium magnetization. The effective field is related to
Mi by the equation

Mi = MSL(ξe)
ξei

ξe

, (2.27)

where

ξei =
μomHei

kBT
. (2.28)

2.4. Averaged equations

To obtain the Reynolds-averaged equations, we use a Reynolds decomposition to
write each dependent variable (uj , p, ωi, Mi, Hi) as the sum of a mean and fluctuating
component, e.g. for velocity, ui = ui + u′

i , where an overbar represents the mean
component and the prime designates the fluctuating component. We substitute the
decomposed variables into the governing equations and subsequently average each
term to get the mean linear momentum

ρ
∂ui

∂t
+ ρukui,k = −p,i + 2μeik,k − ρ(u′

ku
′
i),k − 1

2
εiklAl,k + Si, (2.29)

the mean internal angular momentum

ρI
∂ωi

∂t
+ ρIukωi,k = 2η′s ik ,k + Ai + Qi − ρIu′

kω
′
i,k (2.30)

and the mean continuity

uk,k = 0, (2.31)
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where

Ai = 2ζ (εiklul,k − 2ωi), (2.32a)

Si = μoMkH i,k + μoM
′
kH

′
i,k, (2.32b)

Qi = μoεiklMkH l + μoεiklM
′
kH

′
l . (2.32c)

The left-hand side and the first three terms on the right-hand side of (2.29) are the
same as the mean flow equation for a Newtonian fluid (see e.g. McComb 1992; Pope
2000). The Reynolds stress term, −ρu′

ku
′
i , causes the well-known ‘turbulence closure

problem’, and is interpreted as spatial flux of mean momentum due to the turbulence.
Great effort has been invested in deriving appropriate models for the Reynolds stress
term. In ferrofluids, there are three additional nonlinear terms in (2.29) and (2.30)
u′

kω
′
i,k , M ′

kH
′
i,k, and M ′

kH
′
l . Note that u′

kω
′
i,k = (u′

kω
′
i),k since u′

k,k = 0 from (2.5) and

(2.31). The correlation u′
kω

′
i can be interpreted as the flux of mean internal angular

momentum by the turbulence, analogous to the Reynolds stress. The terms M ′
kH

′
i,k

and M ′
kH

′
i indicate the effect of magnetic field fluctuations on the mean flow. Thus,

the turbulence closure problem is more complex for ferrofluids. In addition to these
new terms which require modelling, it would be expected that terms such as the
Reynolds stresses would require new modelling, as the magnetic field modifies the
physics of the turbulent flow.

Note that when the moment of inertia and couple stress terms are neglected in the
angular momentum equations, the averaged angular momentum equation reduces to

ωi =
1

2
εiklul,k +

μo

4ζ
(εiklMkH l + εiklM

′
kH

′
l ). (2.33)

2.5. Reynolds stress equations

To obtain the equations for Reynolds stresses and related quantities, first the
transport equations for the fluctuating components of velocity and spin are derived by
subtracting their respective mean equations from the Reynolds-decomposed equations.
Next, each term in the fluctuating equation for velocity u′

i is multiplied by u′
j , then

another equation is written by interchanging the subscripts i and j , the two equations
are added together and then each term is averaged. The result is the Reynolds stress
equation:

∂u′
iu

′
j

∂t
+ uk(u

′
iu

′
j ),k = −[u′

iu
′
k uj,k + u′

ju
′
k ui,k] − [(u′

iu
′
ju

′
k) + 1

ρ
(u′

jp
′)δik + 1

ρ
(u′

ip
′)δjk

+ ν(u′
iu

′
j ),k],k + 1

ρ
[p′(u′

i,j + u′
j,i)] − 2νu′

i,ku
′
j,k − 1

2ρ
[u′

j εiklA
′
l,k + u′

iεjklA
′
l,k]

+ 1
ρ
[u′

jS
′
i + u′

iS
′
j ]. (2.34)

The first square-bracketed terms on the right-hand side represent the production
tensor, the second square-bracketed terms are the turbulent and molecular transport
terms, the next term is the pressure/rate-of-strain tensor, and the following term is
the dissipation-rate tensor. The new terms are the last two sets of square-bracketed
terms. The first represents the correlation of the velocity with the curl of the vector A,
i.e. with the divergence of the asymmetric component of the stress tensor, while
the last represents the correlation between the velocity and the magnetic body
force.
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The analogous correlation equation for the fluctuating spin is

ρI

(
∂ω′

iω
′
j

∂t
+ uk( ω′

iω
′
j ),k

)
= −ρI

[
(ω′

ju
′
k ωi,k + ω′

iu
′
k ωj,k)

]
− ρIu′

k(ω
′
iω

′
j ),k

+ η′(ω′
jω

′
i),kk − 2η′ω′

i,kω
′
j,k +

[
ω′

jA
′
i + ω′

iA
′
j

]
+

[
ω′

jQ
′
i + ω′

iQ
′
j

]
. (2.35)

The first bracketed term on the right-hand side is the production term; the second
is a turbulent diffusion term; the third term is a molecular diffusion term; and the
fourth term is the dissipation rate term. The last two sets of bracketed terms represent
the correlations of spin with the asymmetric component of the stress tensor and the
magnetic body torque, respectively. An equation for ω′

ju
′
i , the flux of mean internal

angular momentum identified above, can be derived by multiplying the u′
i equation

by Iω′
j , then multiplying the Iω′

i equation by u′
j , adding, taking the average, and

dividing by ρI . When the spin viscosity is zero and the moment of inertia is small
(both assumptions are justified in § 4), this equation reduces to

u′
jA

′
i + u′

iA
′
j + u′

jQ
′
i + u′

iQ
′
j = 0. (2.36)

2.6. Turbulent energy equations

The mean kinetic energy is an important quantity in turbulent flows. Here, we use
Reynolds decomposition to expand the mean energies. Then, the transport equations
for the turbulent kinetic energy, which are an important tool in the subsequent analysis
of how the energetics of turbulent flow is modified for ferrofluids, are developed and
the terms in the equations are interpreted.

The mean translational kinetic energy is composed of a mean velocity term and

a fluctuating velocity term, and is given by (ρ/2) u2
i = (ρ/2) ui

2 + (ρ/2) u
′2
i . The term

(ρ/2) u
′2
i is the translational turbulent kinetic energy; in Newtonian flows, this term

is often called the turbulent kinetic energy. Similarly, the mean rotational kinetic
energy is composed of a mean spin term and a fluctuating spin term, and is given

by (ρI/2) ω2
i = (ρI/2) ωi

2 + (ρI/2) ω
′2
i . The term (ρI/2) ω

′2
i represents the rotational

turbulent kinetic energy.
The transport equations for the turbulent kinetic energies are obtained by setting

the subscripts in the Reynolds stress and fluctuating spin equations equal to each
other (i = j ), with then an implied summation on i, and multiplying through by 1/2.
The results are

ρ ∂
∂t

1
2
u

′2
i + ρuk

[
1
2
u

′2
i

]
,k

= −
[
ρu′

k
1
2
u

′2
i − (p′u′

k)δik − 2μu′
ie

′
ik

]
,k − ρui,ju

′
iu

′
j

− 2μe′
ij e

′
ij + 1

2
(εijku

′
jA

′
k),i − 1

4ζ
A′

iA
′
i − ω′

iA
′
i

+ μ0

[
Mju

′
iH

′
i,j + u′

iM
′
jH i,j + u′

iM
′
jH

′
i,j

]
, (2.37)

ρI ∂
∂t

1
2
ω

′2
i + ρIuk

[
1
2
ω

′2
i

]
.k = −

[
ρI u′

k
1
2
ω

′2
i − 2η′ω′

is
′
ik

]
,k − 2η′s ′

ij s
′
ij + ω′

iA
′
i

+ μoεijk[ω
′
iM

′
jH k + Mjω

′
iH

′
k + ω′

iM
′
jH

′
k]. (2.38)

Note that in (2.37) the first square-bracketed terms on the right-hand side represent
the rates of turbulent and molecular transport of translational turbulent kinetic
energy, the second term is the rate of production term from the mean velocity field,
and the third term is the classical dissipation rate of translational turbulent kinetic
energy. The fourth term represents the rate of turbulent diffusion of translational
turbulent kinetic energy by fluctuations in A, the fifth term is the dissipation rate of
turbulent kinetic energy due to the fluctuations in A, the sixth term represents the
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transfer rate of translational turbulent kinetic energy to/from rotational turbulent
kinetic energy, and the last bracketed terms represent the rate of work done on the
turbulence due to fluctuations in u, M , and H . In (2.38) for the turbulent rotational
kinetic energy, the first square-bracketed terms on the right-hand side represent the
rates of turbulent and molecular transport of the turbulent rotational kinetic energy,
the second term is the dissipation rate of rotational kinetic energy into internal energy,
the third represents the transfer rate of turbulent rotational kinetic energy from/to
turbulent kinetic energy, while the last bracketed terms represent the rate of work
done on the system due to fluctuations in ω, M , and H . Finally, we complete the set
of averaged energy equations by averaging the internal energy equation, giving

ρ
∂Û

∂t
+ ρûk(Û ),k = 2μeij eij + 2μe′

ij e
′
ij + 2η′s ij s ij + 2η′s ′

ij s
′
ij

+
1

4ζ
AiAi +

1

4ζ
A′

iA
′
i − qk,k + ρ Q̂h. (2.39)

In (2.39), the first two terms on the right-hand side represent the molecular
dissipation rates of mean flow and turbulent kinetic energies into mean internal
energy, respectively, while the third and fourth terms represent the molecular
dissipation rates of mean flow and turbulent rotational kinetic energies into mean
internal energy. The fifth and sixth terms represent the dissipation rates of mean flow
and turbulent kinetic energies into mean internal energy due to the presence of spin.

2.7. Turbulent magnetic equations

The fields of B, M , and H can be decomposed into mean and fluctuating components:

B = B + B′, M = M + M ′, H = H + H ′, (2.40a–c)

so that Maxwell’s equations for a non-conducting medium can be separated into
mean and fluctuating parts as well:

∇ · B = 0, ∇ × H = 0, H = ∇φ, ∇2φ = −∇ · M, (2.41a–d)

∇ · B′ = 0, ∇ × H ′ = 0, H ′ = ∇φ′, ∇2φ′ = −∇ · M ′. (2.42a–d)

It is useful to examine some of the issues that arise in dealing with the equation for
the average of M . For example, averaging the simplest equation for M , (2.21), gives

∂ M
∂t

+ u · ∇M = −∇ · u′ M ′ + ω × M + ω′ × M ′ − 1

τ
(M − M0). (2.43)

Terms requiring modelling are the following. The first term on the right-hand side,

−∇ · u′ M ′, represents the divergence of the turbulent flux of M , and probably
requires modelling similar to that of the turbulent flux of other quantities. The

third term, ω′ × M ′, involves the correlation of the fluctuations in ω and M .
The term, M0, involving the average of the equilibrium magnetization, involves
the average of a complicated function of the magnitude of the magnetic field H (see
equation (2.22)). This may be difficult to model by standard methods, and may require
information about the probability density of H , so that the model might then require
at least the first two moments of H . Note that if ξ =(μomH )/(kBT ) is ‘small’, then
L(ξ ) = 1/tanh(ξ )−1/ξ ≈ ξ/3+O(ξ 3), and to lowest order, M0 = ((μomMs)/(3kBT )) H .
Therefore, to lowest order, M0((μomMs)/(3kBT ))H .
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Figure 1. Energy modes diagram for a ferrofluid system.

3. Homogeneous ferrofluid turbulence equations
Consider the turbulent flow of a ferrofluid that is assumed to be statistically

homogeneous and contained within a cube, with periodic boundary conditions, of
volume V and side length, L. Assume that L is large relative to the integral length
scale of the flow, L. Assume that the fluid is isothermal, there are no external heat
effects, and that the mean velocity and spin gradients are zero, such that eij = s ij = 0.

First, we reduce the general turbulent kinetic energy equations for the specific case of
homogeneous turbulence. In this case, the spatial gradients of all averaged quantities
are zero, so that the averaged turbulent energy equations, (2.37)–(2.39), become

dEt

dt
= −ε − εA − Φb + Ψ, (3.1)

dEr

dt
= −εC + Φb + Ψs, (3.2)

dU

dt
= ε + εA + εC, (3.3)

where

Et = 1
2
ρu

′2
i , Er = 1

2
ρIω

′2
i , U = ρÛ, ε = 2μe′

ij e
′
ij , (3.4a–d)

εA =
1

4ζ
A′

iA
′
i , εC = 2η′s ′

ij s
′
ij , Φb = ω′

iA
′
i , Ψ = u′

iS
′
i , Ψs = ω′

iQ
′
i . (3.4e–i)

As discussed in § 5, there are several terms representing the transfer rates of one
form of energy to another. ε is the classical viscous dissipation rate of translational
turbulent kinetic energy due to viscous shear stresses, εC is the dissipative rate of loss
of rotational kinetic energy due to couple stresses C , Φb is the rate of work done
on the spin by asymmetric stresses, and results in the transfer of translational kinetic
energy to/from rotational kinetic energy, εA is the dissipation rate of translational
kinetic energy due to the antisymmetric part of the stress (A), Ψ is considered to be
the rate of work done on the turbulent flow by magnetic body forces, and Ψs is the
rate of work done on the turbulent flow by magnetic body couples. The terms εA, εC ,
Φb, Ψ , Ψs are novel to ferrofluids, and if these terms are zero, the turbulent energy
equations become the same as those of a Newtonian fluid.

The turbulent energy transfer modes are illustrated in figure 1. The dissipative
terms, ε, εA, and εC , are each non-negative, and act as sink terms for turbulent
kinetic energies. The transfer term between translational turbulent kinetic energy and
rotational turbulent kinetic energy, Φb, is positive or negative depending on whether
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the spin rate is slower or faster than the local fluid rotation rate. Thus, rotational
turbulent kinetic energy can be transferred to translational turbulent kinetic energy
(when Φb is negative). The transfer terms, Ψ and Ψs , represent turbulent energy
transfer due to the magnetic terms in the equation, and they can act as a source or
sink for energy within the system. Thus, energy can be injected into the flow by means
of the magnetic forces, and this energy can affect the translational turbulent kinetic
energy, rotational turbulent kinetic energy, and ultimately the internal energy.

Then it is convenient to expand the dependent variables in Fourier series, where
here a caret denotes the Fourier transform, i.e.

ui(x) =
∑

k

ûi(k)eik · x, ûi(k) =
1

L3

∫ L/2

−L/2

ui(x)e−ik · x dx, (3.4a, b)

where k = ((2π)/L) n, and n has components n1, n2, n3 = 0, ± 1, ± 2, . . . . The
ferrofluid momentum equation in Fourier space is

dûi(k)

dt
= τ̂i(k) + α̂i(k) + ψ̂i(k) − νk2ûi(k), (3.5)

where

τ̂i =

(
δij − kikj

k2

)
F̂

(1)

j (k), α̂i =

(
δij − kikj

k2

)
F̂

(2)
j (k), (3.6a, b)

ψ̂i =

(
δij − kikj

k2

)
F̂

(3)
j (k), F

(1)
j = {u × (∇ × u)}, (3.6c, d)

F
(2)
j =

{
ζ

ρ
∇ × (2ω − ∇ × u)

}
j

, F
(3)
j =

{
μo

ρ
M · ∇H

}
j

. (3.6e, f )

The Fourier transform of the continuity equation is

k · û(k) = 0. (3.7)

The Fourier transform of the spin equation is

∂(I ω̂i(k))

∂t
= −γ̂i(k) +

1

ρ
Âi(k) +

μo

ρ
Q̂i(k) − η′

ρ
k2ω̂i(k) (3.8)

where

γi = Iujωi,j , Â = 2ζ (ik × û − 2ω̂), Q = M × H . (3.9a–c)

Spectral analysis is a useful tool to gain insight into the distribution of energy
in wavenumber space. In order to analyse the transfer of energy between different
wavenumber modes, we derive the Fourier space form of the translational turbulent
kinetic energy equation. This is achieved by first multiplying (3.5) by û∗

i (k), then
multiply each term in the complex conjugate form of (3.5) by ûi(k), summing the two
equations, and averaging (e.g. see Pope, 2000)

dÊt (k)

dt
= T̂ (k) + Φ̂a(k) + Ψ̂ (k) − ε̂(k), (3.10)

where

Êt (k) = 1
2
〈ûi(k)û∗

i (k)〉, T̂ (k) = 1
2
[〈ûi(k)τ̂ ∗

i (k)〉 + 〈û∗
i (k)τ̂i(k)〉], (3.11a, b)

Φ̂a(k) = 1
2
[〈ûi(k)α̂∗

i (k)〉 + 〈û∗
i (k)α̂i(k)〉], (3.11c)

Ψ̂ (k) = 1
2
[〈ûi(k)ψ̂∗

i (k)〉 + 〈û∗
i (k)ψ̂i(k)], ε̂(k) = νk2〈ûi(k)û∗

i (k)〉. (3.11d , e)
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Here 〈 · 〉 represents the averaging operator in the spectral domain. The rotational
turbulent kinetic energy equation in Fourier space, derived in an analogous manner,
is

dÊr (k)

dt
= Γ̂ (k) + Φ̂b(k) + Ψ̂s(k) − ε̂C(k) (3.12)

where

Êr (k) = 1
2
I 〈ω̂i(k)ω̂∗

i (k)〉, Γ̂ (k) = 1
2
I [〈ω̂∗

i (k)γ̂i(k) + ω̂i(k)γ̂ ∗
i (k)〉] (3.13a, b)

ρΦ̂b = 1
2
[〈ω̂∗

i (k)Âi〉 + 〈ω̂i(k)Â∗
i 〉], (3.13c)

ρΨ̂s(k) = μo/2[〈ω̂∗
i (k)Q̂i〉 + 〈ω̂i(k)Q̂∗

i 〉], ρε̂C(k) = η′k2〈ω̂i(k)ω̂∗
i (k)〉. (3.13d, e)

Equation (3.10) describes how the wavenumber distribution of turbulent kinetic
energy changes with time. Êt is the spectrum of translational turbulent kinetic energy,
T̂ is the spectrum of the inertial transfer rate of the translational turbulent kinetic
energy, and ε̂ is the spectrum of the classical viscous dissipation rate of translational
turbulent kinetic energy due to viscous shear stresses. Φ̂a is interpreted to be the
spectrum of work done on the vorticity by asymmetric stresses, and contains both
the transform of the dissipation rate of translational kinetic energy, ε̂A, and the
transform of the transfer rate between translation and rotational kinetic energies,
Φ̂b (see also equation (2.31)). Ψ̂ can be considered to be the spectrum of energy
conversion between kinetic and magnetic degrees of freedom. In a Newtonian fluid,
Φ̂a and Ψ̂ are zero.

Equation (3.12) describes how the wavenumber distribution of turbulent
translational kinetic energy changes with time. Here, Êr is the spectrum of rotational
turbulent kinetic energy of the rotating particles, Γ̂ is the spectrum of the inertial
transfer rate of the rotational turbulent kinetic energy (analogous to T̂ ), Φ̂b is the
spectrum of the exchange terms mentioned above, Ψ̂s is the spectrum of energy
conversion between rotational and magnetic degrees of freedom, and ε̂C is the
spectrum of the rate of dissipative loss of rotational turbulent kinetic energy due
to couple stresses.

Note that the transform of the dissipation rate of translational turbulent kinetic
energy due to Ai can be expressed as ε̂A(k) = −Φ̂a(k) − Φ̂b(k). This expression can
be used to rewrite the kinetic, rotational, and internal energy spectrum equations as

dÊt (k)

dt
= T̂ (k) − ε̂A(k) − Φ̂b(k) + Ψ̂ (k) − ε̂(k), (3.14)

dÊr (k)

dt
= Γ̂ (k) + Φ̂b(k) + Ψ̂s(k) − ε̂C(k), (3.15)

dÛ s(k)

dt
= ε̂(k) + ε̂A(k) + ε̂C(k). (3.16)

In equation (3.15) the rate-of-change term and the inertial term can usually be
neglected because the moment of inertia is very small (as is done in our numerical
scheme described below), giving

Φ̂b(k) + Ψ̂ s(k) − ε̂C(k) = 0. (3.17)

4. Fluid parameters
The governing equations contain a number of physical parameters which must be

measured or estimated:
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ν – kinematic viscosity
m – magnetic moment of a single particle
Msat – saturation magnetization
τ – particle relaxation time
ζ – vortex viscosity
I – moment of inertia of a single particle
η′ – spin viscosity
χo – initial magnetic susceptibility
The experimental fluid that we simulate is the water-based ferrofluid, EMG-206,

from Ferrotec. The magnetite particles suspended in this fluid are assumed to have a
mean magnetic diameter of dm = 10 nm. Ferrofluid particles are typically assumed to
be 10 nm, because particles smaller than this lose their dipole moment, and particles
larger exhibit significant particle-particle magnetic interaction. With the surfactant
attached, the hydrodynamic diameter is approximately dh = 29.5 nm. These values are
typical for ferrofluids. Due to a magnetically dead outer layer of magnetite on a
particle, the actual diameter of the solid particle, ds , is slightly larger than dm. The
particles in the system are assumed to be monodisperse and non-agglomerating due
to the high shear rates characteristic of turbulent flows. The justification is based on
experiments that suggest that agglomerations and chains of ferrofluid particles break
apart in the presence of a strong shear (Odenbach 2002). The system is taken to be
at a standard temperature of T = 298.15 K.

Many of the fluid properties were determined by Schumacher et al. (2003): μ =
3.85 × 10−3Pa s; ρ = 1187.4 kg m−3; thus, ν = μ/ρ = 3.24 × 10−6 m2 s−1. The magnetic
moment of an individual particle is determined via m = πd3

mMs,solid/6, where
Ms,solid is the saturation magnetization of the magnetite, 478 kA m−1. Thus,
m =2.5 × 10−19 A m2.

The saturation magnetization of EMG-206 was obtained from data taken by Energy
International, Bellevue, Washington. A value of Ms = 164 Oe is determined by plotting
M vs. 1/H and extrapolating to 1/H =0 (see Schumacher 2005, Appendix B). The
magnetic particle relaxation time refers to the time it takes for a ferrofluid particle
to reorient its magnetization vector with an external field. Two types of relaxation
times are relevant: Brownian and Néel. The Brownian relaxation time refers to when
the magnetic moment is rigidly fixed within the particle and the particle has to rotate
itself to align with an applied field. The Néel relaxation time refers to when the
magnetization moment is free to rotate inside the particle without the particle having
to move. For particles with diameters greater than 10 nm, Brownian relaxation is
much faster than Néel relaxation; thus, the Néel component is ignored here and the
relaxation time, τ , is equal to the Brownian relaxation time, τB . Shliomis (1972) relates
the Brownian relaxation time to the effective hydrodynamic volume, Vh, which is the
volume of the particle with the surfactant attached, and the dynamic viscosity of the
carrier fluid, μc,

τB =
3Vhμc

kBT
, (4.1)

where kBT is the thermal energy. Any agglomeration that occurs in real fluids leads
to larger relaxation times. For this fluid, the relaxation time is estimated to be 10 μs.

The vortex viscosity, ζ , is the coefficient in the rate of transfer of internal to external
angular momentum. In the energy equations, it appears as a proportionality constant
of a rate of dissipation when the particles spin at a different rate than half the
vorticity. Here, the vortex viscosity is estimated according to ζ = 1.5μφh (Rosensweig
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1985), where φh is the hydrodynamic volume fraction of the particles. Using this
method for EMG-206, Schumacher et al. (2003) estimated ζ/μ = 0.50. Replacing the
Msat = 11.94 kAm−1 used by Schumacher et al. (2003) with Msat = 13.05 kA m−1 gives
ζ/μ = 0.55. Feng et al. (2006) provide a computational method for determining the
vortex viscosity as a function of concentration.

If the ferrofluid particle is considered as a two-layered sphere with different densities
in each layer, the moment of inertia per unit mass, I , is

I =
8
15

π
[
ρ1R

5
1 + ρ2

(
R5

2 − R5
1

)]
4
3
π
[(

ρ1 − ρ2

)
R3

1 + ρ2R
3
2

] . (4.2)

Thus, for a ferrofluid solution with particles of core density ρ1 = 5420 kg m−3,
outer density ρ2 = 1000 kg m−3, core radius R1 = 5 × 10−9 m, and overall radius
R2 = 14.75 × 10−9 m the moment of inertia is I = 7.57 × 10−17 m2.

The spin viscosity is the transport coefficient that relates the couple stress to the
spin gradient. The spin viscosity has never been measured experimentally; however,
Bou-Reslan (2002) uses Brownian Dynamics computer simulations to estimate a value
of η′ = 2 × 10−15 kg m s−1.

The Felderhof & Kroh (1999) magnetization equation requires a value for the initial
susceptibility of the ferrofluid. We use the relationship

χo =
μoMsm

3kBT
, (4.3)

from Felderhof & Kroh (1999) to obtain a value of χo =0.332.
The moment of inertia of the ferrofluid particle is so small that the substantial

derivative term in the spin equation can be ignored. The spin viscosity is also very
small and the spin diffusion term can possibly be neglected; this is verified for the
homogeneous simulations. The magnetic body force term in the momentum equation,
μoM · ∇H , and convection term in the magnetization equation, u · ∇M , are expected
to be small, and we verify that they are negligible.

The moment of inertia of a ferrofluid particle is very small, and the estimate of the
ferrofluid spin viscosity is also small. Therefore, it is often assumed that the terms in
the spin equation that contain these parameters are negligible. An order of magnitude
estimate shows the ‘smallness’ of these terms. The first term in the spin equation,
ρI∂ω/∂t , contains the moment of inertia. In the constituted form of the spin equation
(2.4), the spin diffusion term, η′∇2ω, contains the spin viscosity. Estimates of these
two terms are compared to an estimate of the −4ζω term on the right-hand side to
give the ratios

ρI

τζ
,

η′

�2ζ
. (4.4a, b)

We specify τ to be the particle relaxation time, τB , 10 μs, and specify � to be the
Taylor turbulence scale, λ, defined below; we obtain

ρI

τBζ
∼ 5 × 10−6,

η′

λ2ζ
∼ 7 × 10−5. (4.5a, b)

Both of these ratios are much less than 1; the spin diffusion term may become
important as the Kolmogorov scale becomes smaller, and the effect of the η′∇2ω term
is examined numerically in § 6.
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5. Numerical analysis
5.1. Numerical details

Homogeneous turbulence is simulated in a cube of dimension L, where L is large
relative to the integral scale of turbulence within the cube, L. The cubic domain
is discretized by choosing a sufficiently dense mesh such that the smallest scales
of motion are resolved. The fluctuating dependent variables are treated as periodic
functions and expanded in terms of a finite Fourier series in all three dimensions.
The boundary conditions of all dependent variables exhibit periodicity in all three
dimensions. For example, the velocity and pressure are represented as

u(x) =

N/2∑
kx = −N/2

N/2∑
ky = −N/2

N/2∑
kz = −N/2

û(k) eik · x, (5.1a)

π(x) =
p(x)

ρ
=

N/2∑
kx=−N/2

N/2∑
ky=−N/2

N/2∑
kz=−N/2

π̂(k) eik · x, (5.1b)

where kx , ky , and kz are the wavenumbers ranging from –N/2 to N/2. Similar
expansions are done for spin, magnetization, and the magnetic field. In physical space
the dependent variables are real functions of space; therefore, the Fourier coefficients
for these variables satisfy conjugate symmetry, e.g. û(k) = û∗(−k). Spectral methods
are used; derivatives are computed in Fourier space and nonlinear terms are computed
in physical space.

Recall that the complete set of ferrohydrodynamic governing equations contains
five times as many nonlinear terms as the Navier–Stokes equations, and in order to
compute each nonlinear term, the relevant variables and derivatives are inverse fast-
Fourier transformed from wavenumber to physical space and then the nonlinear term
is evaluated. The nonlinear terms are subsequently fast-Fourier transformed back to
wavenumber space. In our code, the full ferrohydrodynamic simulation involves 45
total transformations per time step, whereas the Navier–Stokes simulations require
only nine. Since approximately 90 % of the computational effort is spent in doing
Fourier transformations, significantly greater computational resources are required
relative to an analogous Newtonian case.

The average component of H , i.e. Ĥ (0,0,0), is a specified function of time that is

related to the applied magnetic field, Ĥ 0x
, by

Ĥ x(0,0,0) = Ĥ ox
, Ĥ y(0,0,0) = 0, Ĥ z(0,0,0) + M̂z(0,0,0) = B̂oz

/μo = 0. (5.2a–c)

These relationships are enforced by direct substitution into the (0,0,0) Fourier mode.
The code was subjected to two primary verification tests. First, the Taylor–Green

vortex problem is solved analytically for short times and compared with results by
Taylor & Green (1937). Second, the time-averaged torque is computed in a simplified
system and compared to the results of the analytic solution of Zahn & Greer (1995).
Details are available elsewhere (Schumacher 2005).

5.2. Initial velocity

Fully developed and steady-state turbulent ferrofluid flow through a 0.3 cm diameter
tube at Re ∼ 3100 has been studied experimentally and simulated numerically using a
modified low-Reynolds-number k–ε model (Schumacher et al. 2003); in that case, the
local flow near the centre of the tube had a translational turbulent kinetic energy of
Et =657 cm2 s−2. The root-mean-square (RMS) velocity is related to the translational
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turbulent kinetic energy by

Et =
3

2
u2

RMS. (5.3)

Therefore, uRMS ∼ 20.9 cm s−1. According to McComb (1990), the Taylor-microscale
Reynolds number, Reλ = λuRMS/ν, can be estimated using Reλ = 0.95Re7/16, which
gives Reλ ∼ 32 for this case. Once the Taylor-microscale Reynolds number is estimated,
the Taylor microscale can then be calculated,

λ = Reλν/uRMS ≈ 0.05 cm, where the Taylor microscale is λ =
√

(10νEt )/ε.

The length of one side of the cubic domain is taken as L =10λ= 0.48 cm, which is
five times the integral scale, L.

The homogeneous ferrofluid flows that we report in this paper have flow properties
that resemble this experimental case. Kerr (1985) performed DNS calculations of
homogeneous flows with a range of Reλ = 28.5–55.9 using 643 modes, and this
number of modes was adequate for full resolution of the flow. Reλ for our flow is
relatively low; for comparison, Gotoh, Fukayama & Nakano (2002) did simulations at
Reλ = 460 using 10243 nodes and Kaneda et al. (2003) did simulations at Reλ = 1200
with 40963 grid points. Because the flow we are interested in here occurs at a modest
Reλ, the full homogeneous simulations are feasible using the computational resources
of a single desktop PC; we employ 643 modes in our simulations.

For the ferrofluid simulations, the flow is forced by injecting energy at low
wavenumbers, and we allow the flow to develop in the absence of a magnetic field
for six large-eddy turnover times. A single large-eddy turnover time is defined as

T =
L

uRMS

, (5.4)

where

L =
π

2u2
RMS

∫ ∞

k=0

Et (k)

k
dk (5.5)

is the integral length scale. This gives ample time for the flow to ‘relax’ from its
imposed initial conditions, and it allows the forced turbulence to reach a statistically
stationary state by the time that the magnetic field is turned on. The magnetic field is
turned on at the beginning of the sixth large-eddy turnover time. In order to obtain
a statistically stationary state, energy is injected into the flow at the largest scales.
Forced simulations compensate for the energy dissipated at small scales by injecting
energy into the large scales. Further, the use of forcing helps to alleviate some of
the complications with interpreting the time-evolving turbulence scales of decaying
turbulence (Sundaram & Collins 1997). For the simulations here, energy injection is
performed after each velocity update. All wavenumber modes less than 2.5kmin are
considered to be within a forcing shell, and the energy within the forcing shell is
kept constant throughout the entire simulation in the following manner. After the
velocity is advanced one time step, the Fourier modes within the forcing shell are all
multiplied by the value necessary for the energy in the forcing shell to be the same as
it was prior to the time step. This forcing scheme, used by Zikanov & Thess (1998),
helps minimize the artificial effects of energy injection.

To simulate the flow case with the magnetic field applied, the energy in the forcing
shell is set to equal 70 % of the turbulent kinetic energy at the centre of the pipe.
The flow was allowed to develop for 12 large-eddy turnover times, and the flow
statistics reported in table 2 represent flow properties that are time-averaged over the
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uRMS 20.63 cm s−1 L 0.1 cm
ε 60 400 cm2 s−3 T 0.00485 s
λ 0.0586 cm η 0.00487 cm
Reλ 37.3 τη 7.324 × 10−4 s
kmaxη 2.0 �t 1.5 × 10−5 s

Table 2. Time averages over the final six large-eddy turnover times of the homogeneous
simulation.

final six large-eddy turnover times. Notice in table 2 that the properties Reλ =37.3,
Et ∼ 648 cm2 s−2 (where Et is computed using uRMS), and λ=0.0586 cm are all close
to the properties estimated at the centre of the pipe. When kmaxη � 1.5, the smallest
scales of motion are well resolved (Pope 2000). From table 2, kmaxη ∼ 2.0 exceeds this
requirement; thus, the small scales of the turbulent flow are adequately resolved. The
initial velocity field for the ferrofluid simulations is representative of the homogeneous
turbulence at the centreline of the experimental flow, is in a statistically stationary
state, and the smallest scales of the flow are well resolved.

5.3. Length and time scales

Turbulence naturally contains a wide range of length and time scales that must
be resolved when doing accurate direct numerical simulations. The largest length
scales determine the domain size and the smallest determine the density of mesh
necessary to resolve all relevant motion. The time step required for accuracy and
stability in a ferrofluid system can be very different from those for a Newtonian fluid.
The primary characteristic times in the ferrofluid system in which we are interested
are the Kolmogorov time of the turbulent flow, τη, and the relaxation time of the
magnetic particles, τB; if the magnetic field were oscillating, the period of oscillation
of the magnetic field, 2π/Ω , would become important. The time step required for an
accurate solution depends upon each of these. Note that in the results reported here,
the applied magnetic field Ĥ 0x

is held fixed in time.
For an accurate simulation of a Newtonian fluid, a fluid particle must not move

more than a portion of the node spacing �x (Pope 2000). Pope recommends using the
Courant condition (k0.5�t)

/
�x = 1/20 as a basis for choosing a time step size. The

magnetization relaxation time that appears in the material magnetization equation is
very small, ∼10 μs. In many cases this causes the stable time step required for the
solution of the magnetization equations to be much smaller than the �t needed for
an accurate solution of the momentum equations.

When there is a large separation of time scales due to a very small τB , one
option is to use brute force and update the entire system of equations using a small
enough �t to ensure both the stability of the magnetization equation and accuracy
of the momentum equation. However, if the velocity field changes slowly compared
to the characteristic relaxation time, then it is reasonable to partially decouple the
momentum and magnetization equations such that the magnetization equation is
updated with very small time steps using a constant velocity field. After a certain
number of time steps, the velocity field is updated. This subcycling method is used
to significantly decrease the computational effort required to update the full set of
governing equations for some simulations.
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Ferrofluid Newtonian

Et (cm2 s−2) 634.51 634.51
T (cm2 s−3) 0 0
ε (cm2 s−3) 58418.6 58419.2
εA (cm2 s−3) 3.9 × 10−5 0
εC (cm2 s−3) 0.61 0
Φb (cm2 s−3) 0.61 0
λ (cm) 0.0594 0.0594
η (cm) 0.00491 0.00491
τη (s) 7.45 × 10−4 7.45 × 10−4

Reλ 37.65 37.65

Table 3. Flow properties of a ferrofluid without a magnetic field and an analogous
Newtonian fluid.

6. Results
6.1. Magnetic field turned off

The equations of motion for a ferrofluid flow with no applied magnetic field (and
ignoring the terms involving moment of inertia) are

ρ

(
∂u
∂t

+ u · ∇u

)
= −∇p + 2μ∇ · e + ζ∇ × (2ω − ∇ × u), (6.1)

0 = 2η′∇ · s + 2ζ (∇ × u − 2ω), (6.2)

∇ · u = 0. (6.3)

If the couple stress term 2η′s is negligible, then 2ζ (∇ × u − 2ω) = 0, and the governing
equations become the same as Navier–Stokes equations. The couple stress term is
generally negligible for most ferrofluid flows because the spin viscosity and spin
gradients are usually small. If turbulent motions or the presence of a solid boundary
induce large spin gradients, this can lead to a couple stress that is no longer negligible,
and the resulting spin and vortex viscous terms will induce non-Newtonian behaviour.

We compute the turbulent ferrofluid flow without a magnetic field, and we compare
the results to a Newtonian simulation using the same parameters. Time-averaged
results are summarized here in table 3. In the ferrofluid case the vortex rate of
dissipation term, εA, and rotational kinetic energy rate of dissipation term, εC , are not
exactly zero, but they are very small relative to the classical rate of viscous dissipation.
Thus, these terms are essentially unimportant in this particular case. The difference
between the ferrofluid case and the Newtonian case is so small that the ferrofluid
system without a magnetic field can be accurately approximated as a Newtonian fluid.

The couple stress term starts to become important when Cη′ > 1 (Schumacher 2005),
where Cη′ = η′/(η2μ) is a non-dimensional coefficient in the normalized spin equation.
This normalized equation can be obtained from the spin equation by using the velocity
scale U and the Kolmogorov length scale η to non-dimensionalize it. In particular,
spin is then non-dimensionalized with U/η, and the spin-rate gradient s with U/η2.
The result is the following, where the primes denote the non-dimensional quantity:

0 = 2
η′

η2μ
∇′ · s′ + 2

ζ

μ
(∇′ × u′ − 2ω′). (6.4)
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Figure 2. Spectra for H0 = 316 Oe using the magnetization equation from Martsenyuk et al.
(1974): (a) individual velocity components, (b) individual spin components. Both spectra are
normalized using equations (34) and (35), respectively.

Thus, as the spin viscosity becomes larger and/or the Kolmogorov scale becomes
smaller, spin effects grow in magnitude. For the ferrofluid here, Cη′ = 0.00025. Thus,
Newtonian fluid behaviour is expected.

6.2. Steady magnetic field results

In this section, we study the effect of applying a steady spatially uniform magnetic
field to homogeneous turbulent ferrofluid flow (see equations (5.2a–c)). Although the
applied field is spatially uniform, the turbulent flow of the magnetic liquid may induce
magnetic field fluctuations. The full set of governing equations is solved using DNS.
The effect of the magnetic field magnitude and the choice of magnetization equation
are also examined. Three different magnitudes of magnetic field are considered here:
158 Oe (ξ = 0.96), 316 Oe (ξ = 1.92), and 1264 Oe (ξ = 7.68), where the values in
parentheses represent the normalized magnitude defined by (2.23b). The three
different material magnetization equations discussed previously (Shliomis 1972, (2.21);
Martsenyuk et al. 1974, (2.26); and Felderhof & Kroh 2000, (2.24)) are also considered
at each magnetic field strength. The results are compared to the case without a
magnetic field, which is essentially the same as a Newtonian flow. For the cases
reported here, the flow is solved in time over a span of four large-eddy turnover
times.

For the first case discussed here, the complete set of ferrohydrodynamic equations
is solved in conjunction with the magnetization equation proposed by Martsenyuk
et al. (1974) with an applied field magnitude of 316 Oe (ξ = 1.92). First, we present
results showing how the magnetic field affects the spectra of the kinetic energy of
the components of the velocity field, figure 2. The time-averaged RMS velocity
components for this magnetic field case are ux = 19.50 cm s−1, uy = 22.09 cm s−1,
and uz = 19.39 cm s−1, and the same components in the magnetic-field-off case are
ux = 19.84 cm s−1, uy = 22.16 cm s−1, and uz = 19.61 cm s−1. The magnetic field causes
a very slight damping of the velocity fluctuations. Figure 2(a) shows how the spectra
of the velocity components are affected at different wavenumbers. Specifically, the
ratio

Et

Et0

=
〈ûi,ξ=1.92(k) û∗

i, ξ=1.92(k)〉
〈ûi, ξ=0(k) û∗

i,ξ=0(k)〉 (6.5)
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Figure 3. Spectra for H0 = 316 Oe using the magnetization equation from Martsenyuk et al.
(1974): (a) energy transfer rate, T ; (b) energy transfer spectra due to the magnetic body
force, Ψ .

is plotted vs. k, where the numerator represents the energy spectrum of the
translational component in the magnetic field case and the denominator represents the
corresponding component with the magnetic field turned off. Note that the averaged
spectral quantities are computed by summing the Fourier amplitudes in shells in
wavenumber space. Because the ratio is less than unity at all points outside the forcing
range, the magnetic field decreases the spectral energy at all wavenumbers outside
the forcing shell. At low wavenumbers the ratio is near 1 because of forcing. The
slope for each component is negative, showing that the spectral energies are decreased
more at smaller scales. Further, the velocity components that are perpendicular to
the field (y- and z-directions) show a smaller damping effect compared to the velocity
component that is parallel to the magnetic field (x-direction).

The time-averaged RMS spin components for the magnetic field case are
ωx =369 s−1, ωy = 310 s−1, ωz =295 s−1, and the same components with the magnetic
field turned off are ωx = 379 s−1, ωy = 401 s−1, and ωz = 381 s−1. Thus, the spin
components perpendicular to the field (y- and z-directions) are severely damped
relative to the magnetic-field-off case, while the spin component parallel to the
magnetic field (x-direction) is slightly less than the magnetic-field-off case. These
results show that the magnetic field has a strongly anisotropic effect on the
fluctuating spin components. This is further illustrated in figure 2(b), which shows
how the magnetic field influences the spin components over the wavenumber range.
Specifically, the ratio

Er

Er0

=
〈ω̂i, ξ=1.92(k) ω̂∗

i, ξ=1.92(k)〉
〈ω̂i,ξ=0(k) ω̂∗

i,ξ=0(k)〉 (6.6)

is plotted versus k, where the numerator represents the energy spectrum of the
rotational component in the magnetic field case and the denominator represents the
component of the corresponding spectrum with the magnetic field turned off. The
perpendicular rotational components (y- and z-directions) are severely damped at all
wavenumbers, with the largest decrease occurring at large wavenumbers. The parallel
rotational component (x-direction) is unchanged at low wavenumbers, but decreases
at higher wavenumbers.

Next, consider the wavenumber distributions of the classical energy transfer rate,
T̂ (k), shown in figure 3(a), and the rate of energy conversion between kinetic and
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Figure 4. Spectra of the magnetic field fluctuations and the magnetization fluctuations.

magnetic modes, Ψ̂ (k) , shown in figure 3(b). The directional components of T̂ i(k) and
Ψ̂i(k) are also included in the panels of figure 3. The wavenumber distribution of T̂ (k)
shows an approximate minimum of −7 × 104 cm2 s−3 at the largest scale (kη ∼ 0.06)
and an approximate maximum of 3 × 104 cm2 s−3 at kη = 0.3. The maximum and
minimum values of Ψ̂ (k), as seen in figure 3(b), are about six orders of magnitude
smaller than those of T̂ (k). The spatial averages of both these terms, further averaged
over the four large-eddy times, give very small values of 〈T 〉 and 〈Ψ 〉, especially
relative to other energy terms, for example 〈ε〉 ∼ 54000 cm2 s−3. The volume average
〈T 〉 is approximately zero, within numerical round-off error, because the transfer
rate term is conservative. The Ψ term is not conservative; however, the value
of 〈Ψ 〉 is still very small because the magnitude of Ψ̂ (k) is so small over the entire
range of wavenumbers. Thus, the magnetic body force term does not appear to play
a significant role in this case. The other energy terms are studied below, and they
depend on the magnitude of the magnetic field.

Next, we study the role that the fluctuating magnetic field and fluctuating
magnetization have on the homogeneous flow. The root-mean-square magnetic field
components are Hx = 0.049 A cm−1, Hy = 0.062 A cm−1, and Hz = 0.069 A cm−1, and
the RMS magnetization components are Mx = 0.009 A cm−1, My = 0.120 A cm−1, and
Mz = 0.125 A cm−1; these components are all zero in the magnetic-field-off case. For
comparison, the applied magnetic field is H = 251 A cm−1 (316 Oe) and the mean
induced magnetization due to the applied field is M = 68.3A cm−1. Figure 4 shows
the magnetic field fluctuation spectra and the magnetization fluctuation spectra.
The fluctuations that occur in this flow are very small relative to the applied field
and induced magnetization. Since the flow is sensitive to H and M , and since
HRMS and MRMS are much smaller in magnitude relative to H and M , respectively,
then the fluctuating magnetic components will probably have a negligible influence
on the flow. We validated this by performing another simulation, under the same
conditions, that neglects the magnetic body force in the momentum equation and
magnetic convection terms in the magnetization equation. The flow results are the
same as the simulations that use the full set of equations. Thus, the magnetic body
force and magnetic convection terms can be ignored, and they are neglected in the
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remaining simulations here. Without those two terms the total number of Fourier
transformations is reduced from 45 to 27, which provides significant computational
savings; even so the simulations are still much more intensive than a Newtonian case.

6.3. Effect of magnetic field magnitude

The effect on the turbulent system by increasing the magnetic field magnitude is
studied next. Take a steady uniform applied magnetic field in the x-direction only.
The non-dimensional magnitudes of the fields considered are ξ = 0, 0.96, 1.92, 7.68,
and infinity. The infinite magnetic field is approximated by artificially setting the spin
components transverse to the field to zero at all times in the simulation. For each
applied magnetic field magnitude, a separate flow is solved for each of the three
different magnetization equations considered in this paper. The effects of the three
different magnetization equations are discussed in § 6.4.

As shown in figure 5, the time-averaged length scales become larger with magnetic
field strength and shift upwards towards the ξ = infinity case as ξ becomes larger. In
going from ξ = 0 to 7.68, the Taylor microscale and Kolmogorov microscale increase
by about 7 % and 5%, respectively, and in going from ξ = 0 to ∞, they increase
by about 12 % and 8 %, respectively. The effects of the magnetic field strength on
the RMS values of velocity and spin are shown in figure 6. Here, the RMS velocity
and spin become smaller with magnetic field and shift downwards toward the infinity
case as ξ becomes larger. When going from ξ = 0 to 7.68, the RMS velocity and spin
decrease by about 1.8 % and 39 %, respectively, and in going from ξ = 0 to ∞, they
decrease by about 3.3 % and 71 %, respectively.

Without an applied field, the simulated turbulent velocity, vorticity, and spin
fields are approximately isotropic. The root-mean-square components of the spin
are presented in table 4 as a function of the magnetic field parameter, ξ . Notice that
the RMS components of spin transverse to the applied field become much smaller
than the component parallel to the field, so that the spin field exhibits a highly
anisotropic behaviour in the presence of an applied field.

Since the magnetic body force is neglected, the sink/source term due to this term,

Ψ̂ (k), is zero. The left-hand side of the rotational energy equation is also neglected.
This means that energy transferred to the rotational modes is not accumulated but,
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ξ : 0 0.96 1.92 7.68 ∞

2ωx (s−1) 758 750 736 710 677
2ωy (s−1) 803 728 591 357 0
2ωz (s−1) 762 691 561 339 0

Table 4. Effect of magnetic field on time-averaged spin vector.

rather, instantly redistributed to kinetic, internal, and magnetic energies such that
Φ̂b(k) + Ψ̂s(k) − ε̂C(k) is zero. The energy equations, (3.14)–(3.16), summed over all
wavenumbers, are

dEt

dt
= T − εA − Φb − ε, (6.7)

Φb + Ψs − εC = 0, (6.8)

dU

dt
= ε + εA + εC. (6.9)

In order to study how the magnetic field magnitude influences the energetics, the time-
average of each term, except the internal energy, U , is tracked as the magnetic field
increases. The time-averaged values of ε, εA, εC , Φb, and Ψs are presented in figure 7.
The values of the classical viscous dissipation rate, ε, decrease as the magnetic field
is increased. The vortex viscous dissipation rate, εA, increases with ξ . The rotational
kinetic energy dissipation rate, εC , decreases with ξ . The transfer of energy from
kinetic to rotational modes, Φb, increases with ξ up to ξ = 7.68. However, on going
from ξ = 7.68 to ∞, Φb decreases. The rate of loss of E in a Newtonian fluid is ε, and
in a ferrofluid is the sum ε + εA +Φb, and this is approximately constant (not shown).
Thus, the rate of loss of kinetic energy in each case can be reasonably approximated
using the total ε in the Newtonian fluid case.

6.4. Effect of magnetization equation

Next consider the effect of the magnetization equation at different magnetic field
magnitudes and for all three magnetization equations. Figures 5 and 6 show that the
choice of magnetization equation can affect the characteristics (e.g. λ, η, uRMS, and
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ωRMS) of computed turbulent flow at large magnetic field magnitudes. For example,
at ξ = 7.68, the λ, η, uRMS , and ωRMS predicted by (2.21) and (2.26) differ by 1.7 %,
1.2 %, 0.5 %, and 21 %, respectively.

According to the governing equations, the magnetic field affects the flow through
the magnetic body force and magnetic body couple terms. Because the magnetic
body force is negligible in the cases we are studying, the magnetic field affects the
flow via the torque in the spin equation since this is the only term remaining in
the hydrodynamic equations that contains magnetization. To further understand how
the various magnetization equations affect the mechanics of the flow, we focus on
how the chosen magnetization equation affects the temporal development of the
spatially averaged body torque. Figure 8 shows the development in time of the
root-mean-square torque, μo/2ζ 〈M × H〉, where figure 8(b) focuses on the fast initial
transition region after the magnetic field is turned on. When the magnetic field is
small (ξ = 0.24 and 0.96), the torque does not significantly depend on the choice
of magnetization equation, and the turbulence results are essentially the same (as
shown in figures 5 and 6). However, at larger magnetic fields (ξ =7.68), the torque
term is significantly affected by the choice of the particular magnetization equation
which leads to turbulent flows with different characteristics. From figure 8(b), the
differences in the torque are apparent after a very short time proportional to the
magnetic relaxation time. The torque affects the difference between particle spin and
fluid vorticity (2.11). Since the constitutive equation for the asymmetric stress is
proportional to the difference of spin and vorticity (see § 2.1), it is no surprise that
when the magnetic field is large the differences in body torques, due to the different
magnetization equations, have an impact on the resulting turbulent flow as illustrated
in figures 5 and 6.
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Figure 8. Root-mean-square of the body torque, μo/2ζ 〈M × H 〉, versus time normalized by
the large-eddy turnover time; (a) over the entire simulation time; (b) with a focus on the short
time scales.
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Figure 9. Vortex viscous dissipation rate, εA versus time normalized by the large-eddy
turnover time.

The vortex rate of viscous dissipation is proportional to the square of the difference
between spin and half the vorticity, and thus it is very sensitive to magnetic field
amplitude and the choice of magnetization equation. Figure 9 shows the vortex
rate of viscous dissipation versus time for four different magnitudes of magnetic
field strength and for all three magnetization equations. At the lowest magnetic
field magnitude, ξ = 0.24, the results are superimposed and thus independent of the
magnetization equation used. At medium field strengths (ξ = 0.96 and 1.92) the vortex
rate of viscous dissipation shows a dependence on magnetization equation, but the
differences are not large. At high magnetic field strengths (ξ = 7.68) the differences in
results are large. This result is consistent with the laminar results of Felderhof (2001),
who studied the effects of the three different magnetization equations on ferrofluid
pipe flow with an applied axial magnetic field. Felderhof’s results show that for low
magnitudes of the magnetic field, ξ < 2, the theoretically predicted magnetoviscosity
is essentially independent of the choice of magnetization equation.

There are also a number of other parameters that have a small effect (Schumacher
2005). For vortex viscosities 10 %, 55 %, and 100 % of the shear viscosity, the turbulent
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kinetic energy and rate of viscous dissipation terms vary by no more than 10 %; the
vortex rate of viscous dissipation varies greatly, as expected, but it is still a small part
of the total rate of dissipation. The effect of the saturation magnetization (from 0
to 260) is to increase the Taylor and Kolmogorov microscale lengths by only 3–5 %.
The saturation magnetization does affect the kinetic energy spectrum and especially
the rotational kinetic energy, and these effects are large at large wavenumbers. The
ratio of the Brownian time constant to the Komolgorov turbulent time constant was
investigated for ratios of 0.002, 0.01, 0.5, and 1. For the smallest ratio, the Taylor and
Kolmogorov microscale lengths increased by 3 % and 2 %, respectively. For a ratio
of 1.0, the increases are 8 % and 12 %, respectively. The total kinetic energy decreases
by 10 % when the ratio is increased by a factor of 100.

7. Conclusions
The general equations necessary for a basic theoretical interpretation of the physics

of turbulence in ferrofluids are derived. The equations show multiple novel turbulence
aspects that arise in ferrofluids. For example, two new modes of turbulent kinetic
energy dissipation rate occur and unique modes of energy conversion (rotational
to/from translational kinetic energy and magnetic energy to/from turbulent kinetic
energy) are exhibited in turbulent ferrofluid flows. Furthermore, it is shown that
potential modes for turbulence in ferrofluids are complicated by additional closure
requirements from the five new nonlinear terms in the governing equations.

For turbulence of a ferrofluid in the presence of a steady magnetic field (as well
as the case of no magnetic field) certain terms in the equations are shown to be
unimportant. A ferrofluid with an applied magnetic field gives enhanced anisotropy
of the turbulence, and the turbulence properties (both old ones and new ones) vary
with the strength of the magnetic field. While a ferrofluid has new modes of viscous
dissipation, the total rate of viscous dissipation is almost the same as for a Newtonian
fluid with the same physical properties. The magnetization equations of Shliomis
(1972), Martsenyuk et al. (1974), and Felderhof & Kroh (1999) give similar turbulence
results at smaller magnetic fields (ξ < 2). Thus, the simplest magnetization equation
(2.21), which requires fewer computations and is more easily implemented than either
(2.24) or (2.26), can be used effectively in turbulent flows at low magnetic fields,
namely ξ < 2. However, for larger magnetic fields the three different magnetization
equations give different turbulent flow results.

This work was supported in part by NSF Grant CTS–347044.
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